Mark Scheme (Results)

Summer 2017

BTEC Level 3 National in Engineering Unit 1: Engineering Principles
(31706H)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Engineering Level 3 National 31706H Unit 1: Engineering Principles

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code 31706H_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

Unit 1: Engineering Principles

General marking guidance

- All learners must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do, rather than be penalised for omissions.
- Examiners should mark according to the mark scheme, not according to their perception of where the grade boundaries may lie.
- All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed-out work should be marked UNLESS the candidate has replaced it with an alternative response.

Specific marking guidance

This mark scheme uses the following types of marks:

- M marks: method marks are awarded for "knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

Abbreviations:

- ft - follow through
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC - special case
- oe - or equivalent (and appropriate)
- dp - decimal places
- sf - significant figures

Engineering Unit 1-1706

Question number	Working	Answer	Notes	Mark
1	$\begin{aligned} & s=r \theta \\ & \theta=(66 \times \pi) / 180=1.15 \\ & s=1.15 \times 52 \\ & s=59.90 \mathrm{~mm} \end{aligned}$ also be solved by angle ratios: $\begin{aligned} & S=66 / 360 \times \pi d \\ & S=(66 / 360) \times \pi \times 104 \\ & \underline{s}=59.90 \mathrm{~mm} \end{aligned}$	$s=59.90 \mathrm{~mm}$ Accept final values that round to whole numbers.	M1 for θ or M1 for angle ratios A1 for correct value of s	(2)

Question number	Working	Answer	Notes	Mark
2	$6 t^{2}-16 t+10=0$ $2\left(3 t^{2}-8 t+5\right)$ $2(3 t-5)(t-1)$ $t=1$ or $t=5 / 3$ $t=1, t=1.67$	$t=1, t=1.67$ Accept final values that round to one decimal place.	M1 for appropriate factorisation	A1 for correct values of t

Question number	Working	Answer	Notes	Mark		
3	Surface area of hemisphere: $=\left(4 \pi r^{2}\right) / 2$ $=\left(2 \pi \times 2.3^{2}\right)$ $=33.238 \mathrm{~m}^{2}$ Surface area of cylinder: $=\pi \mathrm{dh}$ $=\pi \times 4.6 \times 4.7$ $=67.921 \mathrm{~m}^{2}$	Area $=117.78 \mathrm{~m}^{2}$ Accept final values that round to one decimal place. Allow follow through for rounding variations.	M1 for surface area of hemisphere	M1 for surface area of cylinder		
Area of base circle:						
$=\pi r^{2}$						
$=\pi \times 2.3^{2}$						
$=16.619 \mathrm{~m}^{2}$	A1 for area of base area				\quad (4)	
:---						

Question number	Working	Answer	Notes	Mark
4	$\begin{aligned} & 2 \log 3+\log 4=\log A+4 \log 2 \\ & \log 3^{2}+\log 4=\log A+\log 2^{4} \\ & \log 9+\log 4=\log A+\log 16 \\ & \\ & \log 36=\log A+\log 16 \\ & \log A=\log (36 / 16) \\ & \log A=\log (2.25) \\ & \underline{A=2.25} \end{aligned}$ Alternative approach: $\begin{aligned} & \log 36=\log 16 A \\ & 36=16 A \\ & A=36 / 16 \\ & A=2.25 \end{aligned}$	$A=2.25$ Accept final values that round to two decimal places. Allow follow through for rounding variations.	M1 for application of $x \log y=\log y^{x}$ M1 for application of $\log x-\log y=\log$ (x / y) or M1 for application of $\log x+\log y=$ logxy A1 for correct value of A	(3)

Question number	Working	Answer	Notes	Mark
5 (a)	Finding the value of h : $\begin{aligned} & \begin{array}{l} \text { Sin } 15=\mathrm{h} / 170 \\ \qquad \mathrm{~h}=170 \sin 15 \\ \\ =44.00 \mathrm{~m} \end{array} \\ & \text { potential energy }=\mathrm{mgh} \\ & \mathrm{PE}=450 \times 9.81 \times 44 \\ & \mathrm{PE}=194240 \mathrm{~J} \\ & \mathrm{PE}=194.24 \mathrm{~kJ} \end{aligned}$	$\mathrm{PE}=194.24 \mathrm{~kJ}$ Accept final values that round to whole numbers. Allow follow through for rounding variations. Allow follow through for incorrect working at earlier stages	M1 for application of trig to find h A1 for finding value of h M1 for finding potential energy A1 for correct value of potential energy	(4)

Question Number	Answer	Mark
5 (b)	Award one mark for advantage and one additional mark for an appropriate linked expansion.	The ramp reduces the force necessary to overcome the force of gravity when lifting the transformer (1) by extending the distance travelled horizontally. (1)
Only the component of the gravitational force parallel to the ramp needs to be overcome (1) therefore the more shallow the slope, the easier it will be to raise the transformer to the desired height. (1)		

Question number	Working	Answer	Notes	Mark
6	Resolving forces vertically $\begin{aligned} & 200=200 \sin 66+F \sin \theta \\ & 200=182.71+F \sin \theta \\ & F \sin \theta=17.29 \end{aligned}$ Resolving forces horizontally $\begin{aligned} & 200 \cos 66=F \cos \theta \\ & \text { Fcos } \theta=-81.35 \\ & \text { To find } F \\ & 200 \cos 66=F \cos 12.52 \\ & F=200 \cos 66 / \cos -12.02 \\ & F=83.17 \mathrm{~N} \end{aligned}$ Alternative approach: $\begin{aligned} & F=\sqrt{ }\left(17.29^{2}+81.35^{2}\right) \\ & F=83.17 \mathrm{~N} \end{aligned}$ To find θ $\tan \theta=o p p / \mathrm{hyp}$ $\tan \theta=17.29 / 81.35=0.213$ $\underline{\theta}=12.02^{\circ}$	$\begin{aligned} & \theta=12.02^{\circ} \\ & F=83.17 \mathrm{~N} \end{aligned}$ Accept final values that round to whole numbers. Allow follow through for rounding variations or incorrect working at earlier stages. Accept responses that state 'below the horizontal'	M1 for resolving vertically M1 for resolving horizontally A1 for correct value of F M1 for finding θ A1 for correct value of θ	(5)

Question number	Working	Answer	Notes	Mark
7	Fresh water: $\begin{aligned} & \text { Force }=\rho g A x=(1000 \times 9.81 \times 4 \times \\ & 10 \times 4 / 2)=784800 \mathrm{~N} \\ & M_{F}=784800 \times 4 \times 1 / 3 \\ & M_{F}=1046400 \mathrm{Nm} \text { clockwise } \end{aligned}$ Sea water: $\begin{aligned} & \text { Force }=\rho g A x=(1030 \times 9.81 \times 1.5 \\ & \times 10 \times 1.5 / 2)=113673.38 \mathrm{~N} \\ & M_{S}=113673.38 \times(1.5 / 3) \\ & M_{S}=56836.69 \mathrm{Nm} \text { anticlockwise } \end{aligned}$ Resultant turning moment: $\begin{aligned} & M=M_{F}-M_{S} \\ & M=1046400-56836.69 \\ & M=989563.31 \mathrm{Nm} \\ & M=990 \mathrm{kNm} \text { clockwise } \end{aligned}$ Do not penalise if centre of pressure is calculated as $1 / 2$ height or similar.	$\mathrm{M}=990 \mathrm{kNm}$ clockwise Accept final values that round to two decimal places. Allow follow through for rounding variations.	M1 for force due to fresh water M1 for process of calculating M_{F} M1 for force due to sea water M1 for process of calculating M_{s} A1 for correct magnitude of resultant turning moment B1 for direction of resultant turning moment (dep)	(6)

Question number	Working	Answer	Notes	Mark
8	Impact velocity of hammer $\begin{aligned} & v^{2}=u^{2}+2 a s \\ & v^{2}=0+2 \times 9.81 \times 3.2 \\ & v=\sqrt{ } 62.78=7.92 \mathrm{~m} / \mathrm{s} \end{aligned}$ Note - can also be found using conservation of energy conservation of momentum $\begin{aligned} & m_{h} v_{\mathrm{h}}+m_{\mathrm{p}} \mathrm{v}_{\mathrm{p}}=\mathrm{m}_{\mathrm{t}} \mathrm{v}_{\mathrm{t}} \\ & 700 \times 7.92+200 \times 0=900 \mathrm{v}_{\mathrm{t}} \\ & 5544=900 \mathrm{v}_{\mathrm{t}} \\ & \underline{\mathrm{v}}_{\mathrm{t}}=6.16 \mathrm{~m} / \mathrm{s} \end{aligned}$ final velocity $=0 \mathrm{~m} / \mathrm{s}$ $\begin{aligned} & v^{2}=u^{2}+2 a s \\ & 0=6.16^{2}+2 a \times 0.18 \\ & 37.95=-0.35 a \\ & a=-108.42 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$ Resistance force $=\mathrm{mg}+\mathrm{ma}$ $=900 \times 9.81+900 \times 108.42$ Force $=106403 \mathrm{~N}=106.40 \mathrm{kN}$	$F=106.40 \mathrm{kN}$ Accept final values that round to whole numbers. Allow follow through for rounding variations.	M1 for the process of finding impact velocity of hammer M1 for the process of finding combined velocity of hammer and pile A1 for finding the value of v_{t} M1 for the process of finding deceleration of pile/hammer M1 for process of finding resistance force A1 for correct value of resistance force	(6)

Question number	Working	Answer	Notes	Mark
9	Taking moments about A : $\begin{aligned} & 26 \times 1=(40 \times 0.5)+1.25 \mathrm{~L} \\ & 26=20+1.25 \mathrm{~L} \\ & 6=1.25 \mathrm{~L} \\ & \underline{L}=4.8 \mathrm{~N} \end{aligned}$ Taking moments about B : $\begin{aligned} & 40 \times 0.5=1 \times R_{A}+(0.25 \times 4.8) \\ & 20=R_{A}+1.2 \\ & \underline{R}_{\underline{A}}=18.8 \mathrm{~N} \end{aligned}$ Alternative approach: Taking moments about B : $\begin{aligned} & 0.25 \mathrm{~L}+1 \times \mathrm{R}_{A}=(40 \times 1 \times 0.5) \\ & 0.25 \mathrm{~L}+\mathrm{R}_{A}=20 \\ & R_{A}=20-0.25 \mathrm{~L} \end{aligned}$ Resolving vertically $\begin{aligned} & 40 \times 1+L=R_{A}+R_{B} \\ & 40+L=R_{A}+26 \\ & R_{A}=14+L \end{aligned}$ Calculating L $\begin{aligned} & 20-0.25 \mathrm{~L}=14+\mathrm{L} \\ & 6=1.25 \mathrm{~L} \\ & \underline{L}=4.8 \mathrm{~N} \end{aligned}$ Substituting $\begin{aligned} & R_{A}=14+L \\ & R_{A}=14+4.8 \\ & R_{A}=18.8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & L=4.8 \mathrm{~N} \\ & R_{A}=18.8 \mathrm{~N} \end{aligned}$ Accept final values that round to whole numbers. Allow follow through for rounding variations. Allow follow through for incorrect working at earlier stages	M1 for taking moments to find L A1 for value of L M1 for taking moments to find R_{A} or M1 for total reaction forces $=$ total load $A 1$ for R_{A}	(4)

Question number	Working	Answer	Notes	Mark		
10	$\mathrm{C}=\varepsilon \mathrm{A} / \mathrm{d}$ $\mathrm{C}=\left(5 \times 80 \times 10^{-6}\right) / 0.0003$ $\mathrm{C}=1.33$	$\mathrm{Q}=80 \mathrm{C}$ Accept final values that round to whole numbers.	M1 for determining C	M1 for process of calculating Q		
A1 for correct value						
Q $=1.33 \times 60$						
$\mathrm{Q}=80 \mathrm{C}$					\quad	of Q
:---						

Question number	Working	Answer	Notes	Mark
11	$\mathrm{E}=\mathrm{v} / \mathrm{d}$ $\mathrm{E}=20 / 0.0035$	$\mathrm{E}=5714 \mathrm{~V} / \mathrm{m}$ accept $5.7 \mathrm{kV} / \mathrm{m}$	A1 for correct value of E	
		Accept values between 5714.0000 and 5714.3000		

Question number	Answer	Mark
12	Award one mark for each feature of a waveform, up to a maximum of 4 marks. - Correct time period T=1/f(1 cycle $=360$ degrees $/ 2 \pi$)(1) - Correct amplitude (+/-3) (1) - Correct shape of waveform (sine wave) (1) - Labelling voltage axis (volts) (1) - Labelling peak voltage/peak to peak voltage (1)	(4)

Question number	Working	Answer	Notes	Mark
13	$\begin{aligned} & \mathrm{F}=\mathrm{q}_{1} \mathrm{q}_{2} /\left(4 \pi \varepsilon_{0} \mathrm{r}^{2}\right) \\ & \mathrm{q}_{2}=\left(\mathrm{F} \times 4 \pi \varepsilon_{0} \mathrm{r}^{2}\right) / \mathrm{q}_{1} \\ & \mathrm{q}_{2}=172 \times 4 \times \pi \times 8.85 \times 10^{-12} \mathrm{x} \\ & 1.2^{2} / 0.3 \\ & =2.75 \times 10^{-8} / 0.3 \\ & \mathrm{q}_{2}=9.17 \times 10^{-8} \mathrm{C} \end{aligned}$	$q_{2}=9.17 \times 10^{-8} \mathrm{C}$ Accept final values that round to whole numbers. Allow follow through for incorrect working at earlier stages	M1 for correct manipulation and population of formula A1 for correct value of q_{2}	(2)

Question number	Working	Answer	Notes	Mark

14	Resistance in top branch $=$ $560+330=890 \Omega$ Resistance in lower branch $=$ $1000+100=1100 \Omega$	P=0.053 W Also accept $P=53 \mathrm{~mW}$	M1 for resistance in top branch M1 for resistance in lower branch Total resistance in parallel branches $R=\left(R_{1} R_{2}\right) /\left(R_{1}+R_{2}\right)$ $R=(1100 \times 890) /(1100+890)$ resistance of the two parallel branches A1 for total resistance A1 for correct value of power
$R=492 \Omega$ Total resistance in circuit $=$ $\underline{2200+492=2692 \Omega}$ through for incorrect working at earlier stages	Power $=V^{2} / R$ $P=12^{2} / 2692$ $\underline{P=0.053 \mathrm{~W}}$	(5)	

Question Number	Answer	Mark
15(b)	Award one mark for reason and one additional mark for appropriate expansion.	Once the breakdown/Zener voltage is passed (1) it allows current to flow in both directions (1).
A constant/consistent DC output voltage can be maintained to the load (1) even if there are variations in the input voltage or changes in the load current (1).	A stabilised/smoothed output voltage can be specified (1) which will be the same as the breakdown voltage of the diode (1).	(2)
Accept any other relevant phrasing/wording.		

Question number	Working	Answer	Notes	Mark
16	Induced EMF (e) = Blvsin θ	$\underline{\text { Change in emf }=}$	M1 for determining the initial emf. A1 for initial value	(5)

	$\begin{aligned} & \mathrm{e}_{1}=1.3 \times 0.45 \times 20 \sin 50 \\ & \mathrm{e}_{1}=8.96 \mathrm{~V} \end{aligned}$ Final emf $\begin{aligned} & e_{2}=1.3 \times 0.45 \times 20 \sin 90 \\ & e_{2}=11.7 \mathrm{~V} \end{aligned}$ Change in emf $=e_{2}-e_{1}$ Change in emf $=2.74 \mathrm{~V}$	Accept final values that round to whole numbers. Allow follow through for rounding variations.	of emf. M1 for process of determining final emf. A1 for value of final emf. A1 for change in emf.	

Question number	Working	Answer	Notes	Mark
17	$\begin{aligned} & \text { Impedance of coil } Z \\ & Z=V / I \\ & Z=120 / 0.15 \\ & Z=800 \Omega \\ & Z=\sqrt{ }\left(R^{2}+X^{2}\right) \\ & Z^{2}=R^{2}+X^{2} \\ & 800^{2}=68^{2}+X^{2} \\ & 640000-4624=X^{2} \\ & X=\sqrt{635376} \\ & X=797 \Omega \\ & X=2 \pi f L \\ & L=797 /(2 \pi \times 50) \\ & L=2.54 H \end{aligned}$	Inductance L = $2.54 \mathrm{H}$ Allow follow through for incorrect working at earlier stages Allow follow through for rounding variations.	M1 for determining Z M1 for value of X M1 for determining L A1 for the value of L	(4)

Question number	Working	Answer	Notes	Mark
$18(\mathrm{a})$	Output power $=56.5 \mathrm{~kW}$ $=\omega T$	$\underline{1798 \mathrm{rpm}}$	M1 for finding the value of ω A1 for the correct	(4)

	$\omega=56.5 \times 10^{3} / \mathrm{T}$		value of ω	
$\omega=56.5 \times 10^{3} / 300$	Allow follow through for rounding variations	M1 for recognising the relationship between rads and rpm A1 for correct		
speed $=\omega \times 60 / 2 \pi$				
speed $=188.3 \times 60 / 2 \pi$				
$=\underline{1798 ~ r p m ~}$		speed in rpm		

Question number	Working	Answer	Notes	Mark
18(b)	Input power: $0.005 \times 46 \times 10^{6}=\underline{230} \mathrm{~kW}$ Power out from generator Power = IV Power $=80 \times 415=33.2 \mathrm{~kW}$ Overall efficiency $=33.2 / 230$ $=\underline{0.1443 \text { or } 14.43 \%}$	$\underline{0.1443 \text { or }}$ 14.43% Accept final values that round to one decimal place. Allow follow through for rounding variations ft	M1 for recognising the need to multiply energy content by mass flow rate A1 for correct value of input power M1 for correct method to calculate power out from generator A1 for the correct value of output power from generator M1 for correct population of the relationship between input and output A1 for correct efficiency value given (ft acceptable)	(6)

Question Number	Answer	Mark
18(c)	Award one mark for identification of an effect on the efficiency of the system and one further mark for justifying for how it affects the efficiency,	

