

Mark Scheme (Results)

Summer 2017

BTEC Level 3 National in Engineering Unit 1: Engineering Principles (31706H)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u> for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: <u>www.edexcel.com/teachingservices</u>.

You can also use our online Ask the Expert service at <u>www.edexcel.com/ask</u>. You will need an Edexcel username and password to access this service.

Engineering Level 3 National 31706H Unit 1: Engineering Principles

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017 Publications Code 31706H_1706_MS All the material in this publication is copyright © Pearson Education Ltd 2017

Unit 1: Engineering Principles

General marking guidance

- All learners must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do, rather than be penalised for omissions.
- Examiners should mark according to the mark scheme, not according to their perception of where the grade boundaries may lie.
- All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed-out work should be marked UNLESS the candidate has replaced it with an alternative response.

Specific marking guidance

This mark scheme uses the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

Abbreviations:

- ft follow through
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC special case
- oe or equivalent (and appropriate)
- dp decimal places
- sf significant figures

Engineering Unit 1 - 1706

Question	Working	Answer	Notes	Mark
number				
1	s = rθ	<u>s = 59.90 mm</u>	M1 for θ	
			or M1 for angle	
	$\theta = (66 \times \pi) / 180 = 1.15$	Accept final	ratios	
		values that		
	$s = 1.15 \times 52$	round to whole	A1 for correct value	
	3 - 1.13 × 32	numbers.	of s	
	s = 50.00 mm			
	<u>S = 59.90 mm</u>			
	also be solved by angle ratios:			
	s = 66/360 x πd			
	s = (66/360) x π x 104			
	<u>s = 59.90 mm</u>			
				(2)

2 $6t^2 - 16t + 10 = 0$ $2(3t^2 - 8t + 5)$ 2(3t - 5)(t - 1) t = 1, t = 1.67 2(3t - 5)(t - 1) t = 1 or t = 5/3 t = 1, t = 1.67 M1 for appropriate factorisation A1 for correct values of t t = 1, t = 1.67	Question number	Working	Answer	Notes	Mark
(2)	2	$6t^{2} - 16t + 10 = 0$ $2(3t^{2} - 8t + 5)$ $2(3t - 5)(t - 1)$ $t = 1 \text{ or } t = 5/3$ $t = 1, t = 1.67$	<u>t = 1, t = 1.67</u> Accept final values that round to one decimal place.	M1 for appropriate factorisation A1 for correct values of t	(2)

Question	Working	Answer	Notes	Mark
number				
3	Surface area of hemisphere:	Area <u>= 117.78 m²</u>	M1 for surface area	
	$=(4\pi r^{2})/2$	Accept final	of hemisphere	
	$=(2\pi \times 2.3^2)$	values that		
	= 33.238 m ²	round to one decimal place.	M1 for surface area of cylinder	
	Surface area of cylinder:	Allow follow		
	$= \pi dh$	through for	M1 for area of base	
	$=\pi \times 46 \times 47$	variations	circle	
	$= 67.921 \text{ m}^2$			
	0,021,00		A1 for total area	
	Area of base circle:			
	$=\pi r^2$			
	$= \pi \times 2.3^2$			
	= 16.619 m ²			
	Surface area of silo:			
	= 33.238 + 67.921 + 16.619			
	<u>= 117.78 m²</u>			(4)

Question number	Working	Answer	Notes	Mark
4	$2\log 3 + \log 4 = \log A + 4\log 2$ $\log 3^{2} + \log 4 = \log A + \log 2^{4}$ $\log 9 + \log 4 = \log A + \log 16$ $\log 36 = \log (36/16)$ $\log A = \log (2.25)$ <u>A = 2.25</u> Alternative approach: $\log 36 = \log 16A$ 36=16A A=36/16	<u>A = 2.25</u> Accept final values that round to two decimal places. Allow follow through for rounding variations.	M1 for application of xlogy= logy ^x M1 for application of log x – log y = log (x/y) or M1 for application of logx + logy = logxy A1 for correct value of A	
	A=2.25			(3)

Question number	Working	Answer	Notes	Mark
5 (a)	Finding the value of h:	<u>PE = 194.24 kJ</u>	M1 for application of trig to find h	
	Sin 15 = h/170 h = 170 sin 15 = 44.00 m	Accept final values that round to whole numbers.	A1 for finding value of h M1 for finding potential energy	
	potential energy = mgh	Allow follow through for rounding variations.	A1 for correct value of potential energy	
	PE = 450 x 9.81 x 44 PE = 194 240 J PE <u> = 194.24 kJ</u>	Allow follow through for incorrect working at earlier stages		
				(4)

Question Number	Answer	Mark
5 (b)	 Award one mark for advantage and one additional mark for an appropriate linked expansion. The ramp reduces the force necessary to overcome the force of gravity when lifting the transformer (1) by extending the distance travelled horizontally. (1) Only the component of the gravitational force parallel to the ramp needs to be overcome (1) therefore the more shallow the slope, the easier it will be to raise the transformer to the desired height. (1) 	
	Accept any other appropriate explanation.	(2)

Question number	Working	Answer	Notes	Mark
6	Resolving forces vertically $200 = 200 \sin 66 + F \sin \theta$ $200 = 182.71 + F \sin \theta$ Fsin θ = 17.29 Resolving forces horizontally $200 \cos 66 = F \cos \theta$ Fcos θ = - 81.35 To find F $200 \cos 66 = F \cos 12.52$ F = 200 cos 66/cos-12.02 <u>F = 83.17 N</u> Alternative approach: F = $\sqrt{(17.29^2 + 81.35^2)}$ <u>F = 83.17 N</u>	$\frac{\theta = 12.02^{\circ}}{F = 83.17 \text{ N}}$ Accept final values that round to whole numbers. Allow follow through for rounding variations or incorrect working at earlier stages.	M1 for resolving vertically M1 for resolving horizontally A1 for correct value of F	
	To find θ tan θ = opp/hyp tan θ = 17.29/81.35 = 0.213 θ = 12.02°	Accept responses that state 'below the horizontal'	M1 for finding θ A1 for correct value of θ	(5)

Question number	Working	Answer	Notes	Mark
7	Fresh water:	<u>M = 990 kNm</u> <u>clockwise</u>	M1 for force due to fresh water	
	Force = ρgAx = (1000 x 9.81 x 4 x 10 x 4/2) = 784800 N M _F = 784800 x 4 x 1/3 M _F = 1046400 Nm clockwise Sea water: Force = ρgAx = (1030 x 9.81 x 1.5 x 10 x 1.5/2) = 113673.38 N M _S = 113673.38 x (1.5/3)	Accept final values that round to two decimal places. Allow follow through for rounding variations.	M1 for process of calculating M _F M1 for force due to sea water M1 for process of calculating M _S	
	M_s = 56836.69 Nm anticlockwise Resultant turning moment: $M = M_F - M_S$ M = 1046400 - 56836.69 M = 989563.31 Nm M = 990 kNm clockwise Do not penalise if centre of pressure is calculated as 1/2 height or similar.		A1 for correct magnitude of resultant turning moment B1 for direction of resultant turning moment (dep)	(6)

Question number	Working	Answer	Notes	Mark
8	Impact velocity of hammer $v^2 = u^2 + 2as$ $v^2 = 0 + 2 \times 9.81 \times 3.2$ $v = \sqrt{62.78} = 7.92 \text{ m/s}$ Note - can also be found using conservation of energy conservation of momentum $m_hv_h + m_pv_p = m_tv_t$ $700 \times 7.92 + 200 \times 0 = 900v_t$ $5544 = 900v_t$ $v_t = 6.16 \text{ m/s}$ final velocity = 0 m/s $v^2 = u^2 + 2as$ $0 = 6.16^2 + 2a \times 0.18$ 37.95 = -0.35a $a = -108.42 \text{ m/s}^2$	<u>F = 106.40 kN</u> Accept final values that round to whole numbers. Allow follow through for rounding variations.	M1 for the process of finding impact velocity of hammer M1 for the process of finding combined velocity of hammer and pile A1 for finding the value of v _t M1 for the process of finding deceleration of pile/hammer M1 for process of finding resistance force A1 for correct value of resistance force	
	Resistance force = mg + ma = 900 x 9.81 + 900 x 108.42 <u>Force = 106 403N = 106.40 kN</u>			(6)

Question number	Working	Answer	Notes	Mark
9	Taking moments about A:	<u>L = 4.8 N</u>	M1 for taking	
	26 x 1 = (40 x 0.5) + 1.25L		moments to find L	
	26 = 20 + 1.25L	R _A = <u>18.8 N</u>	A1 for value of L	
	6 = 1.25L	Accept final		
	<u>L = 4.8N</u>	values that		
		round to whole		
	Taking moments about B:	numbers.		
	$40 \times 0.5 = 1 \times R_A + (0.25 \times 4.8)$	Allow follow	M1 for taking	
	$20 = R_A + 1.2$	through for	moments to find R _A	
	<u>R_A = 18.8N</u>	rounding	or	
		variations.	M1 for total	
	Alternative approach:		reaction forces =	
	Taking moments about B: $0.25L \pm 1.42D = (40.414) + 0.5$	Allow follow		
	$0.25L + T \times R_A = (40 \times T \times 0.5)$	incorrect	A1 for R.	
	$0.25L + R_A - 20$ $P_1 - 20 - 0.25L$	working at		
	$R_{A} = 20 = 0.23L$	earlier stages		
	Resolving vertically			
	$40 \times 1 + L = R_A + R_B$			
	$40 + L = R_A + 26$			
	$R_{A} = 14 + L$			
	20 - 0.25L = 14 + L			
	0 - 1.20L			
	$\frac{L - 4.01N}{Substituting}$			
	$R_{\star} = 14 + I$			
	$R_{A} = 14 + 4.8$			
				(4)

Question number	Working	Answer	Notes	Mark
10	$C = \epsilon A/d$	<u>Q = 80C</u>	M1 for determining	
	C = 1.33	Accept final values that	M1 for process of calculating Q	
	Q = CV Q = 1.33 x 60 <u>Q = 80C</u>	round to whole numbers.	A1 for correct value of Q	(3)

Question number	Working	Answer	Notes	Mark
11	E = v/d	<u>E = 5714 V/m</u>	A1 for correct value	
	E = 20/0.0035	accept	of E	
		<u>5.7 kV/m</u>		
	<u>E = 5714 V/m</u>			
		Accept values between 5714.0000 and 5714.3000		
		Accept values between 5.7140 and 5.7143		(1)

Question	Answer	Mark
12	Award one mark for each feature of a waveform, up to a maximum of 4 marks.	
	 Correct time period T = 1/f (1 cycle = 360 degrees/2 π) (1) Correct amplitude (+/- 3) (1) Correct shape of waveform (sine wave) (1) Labelling voltage axis (volts) (1) Labelling peak voltage/peak to peak voltage (1) 	(4)

Question number	Working	Answer	Notes	Mark
13	$F = q_1 q_2 / (4\pi\epsilon_0 r^2)$ $q_2 = (F \times 4\pi\epsilon_0 r^2) / q_1$ $q_2 = 172 \times 4 \times \pi \times 8.85 \times 10^{-12} \times 1.2^2 / 0.3$ $= 2.75 \times 10^{-8} / 0.3$ $q_2 = 9.17 \times 10^{-8} C$	$\underline{q_2} = 9.17 \times 10^{-8} C$ Accept final values that round to whole numbers. Allow follow through for incorrect working at earlier stages	M1 for correct manipulation and population of formula A1 for correct value of q ₂	
				(2)

Question	Working	Answer	Notes	Mark
number				

14	Resistance in top branch = $560+330 = 890 \Omega$	$\frac{P = 0.053 W}{Also accept}$	M1 for resistance in top branch	
	Resistance in lower branch = 1000 + 100 = 1100 Ω	$\underline{P = 53 \text{ mW}}$	M1 for resistance in lower branch	
	Total resistance in parallel branches $R = (R_1R_2)/(R_1 + R_2)$ $R = (1100 \times 890)/(1100 + 890)$	Allow follow through for incorrect working at earlier stages	M1 for total resistance of the two parallel branches A1 for total resistance	
	<u>R = 492 Ω</u> Total resistance in circuit = <u>2200 + 492 = 2692 Ω</u>		A1 for correct value of power	
	Power = V^2/R P = $12^2/2692$			
	<u>P = 0.053 W</u>			(5)

Question	Answer
Number	

15(a)	Award one mark for application and one additional mark for an appropriate linked expansion.	
	• A diode can be used in a rectifier to convert AC voltages to DC voltages (1) only allowing current flow in the forward direction (1).	
	• A diode can provide reverse current protection (1) which is achieved by the diode being placed in series with the positive side of the supply (1).	
	• Diodes can be used to provide voltage spike suppression (1) by providing a safe route for excess voltages preventing damage to sensitive components (1).	(2)
	• A light emitting diode can be used as an indicator (1) that only lights up as electricity flows in one direction through it (1).	
	Accept any other relevant application with expansion. Do not accept a basic description of the function of a diode on its own e.g. electricity only flows one way.	

Question Number	Answer	Mark
15(b)	 Award one mark for reason and one additional mark for appropriate expansion. Once the breakdown/Zener voltage is passed (1) it allows current to flow in both directions (1). A constant/consistent DC output voltage can be maintained to the load (1) even if there are variations in the input voltage or changes in the load current (1). A stabilised/smoothed output voltage can be specified (1) which will 	(2)
	Accept any other relevant phrasing/wording.	

Question number	Working	Answer	Notes	Mark
16	Induced EMF (e) = Blvsin θ	<u>Change in emf =</u> <u>2.74 V</u>	M1 for determining the initial emf.	
	Initial emf		A1 for initial value	(5)

e ₁ = 1.3 x 0.45 x 20 sin 50		of emf.
e ₁ = 8.96 V	Accept final values that round to whole	M1 for process of determining final emf.
Final emf $e_{2} = 1.3 \times 0.45 \times 20 \sin 90$	numbers.	A1 for value of final emf.
$e_2 = 11.7 V$	Allow follow through for	A1 for change in emf.
Change in $emf = e_2 - e_1$ Change in $emf = 2.74 V$	rounding variations.	

Question	Working	Answer	Notes	Mark
number				
number 17	Impedance of coil Z Z = V/I Z = 120/0.15 Z = $\sqrt{(R^2 + X^2)}$ Z ² = $R^2 + X^2$ $800^2 = 68^2 + X^2$ $640000 - 4624 = X^2$ X = $\sqrt{635376}$ X = 797 Ω	Inductance L = 2.54 H Allow follow through for incorrect working at earlier stages Allow follow through for rounding variations.	M1 for determining Z M1 for value of X M1 for determining L A1 for the value of L	
	X = 2πfL L = 797/(2π x 50) <u>L = 2.54 H</u>			(4)

Question number	Working	Answer	Notes	Mark
18(a)	Output power = 56.5kW = ωT	<u>1798 rpm</u>	M1 for finding the value of ω	
	~~··		A1 for the correct	(4)

$\omega = 56.5 \times 10^3 / T$		value of ω
ω = 56.5x10 ³ /300	Allow follow	
ω = 188.3 rad/s	through for rounding variations	M1 for recognising the relationship between rads and
speed= $\omega \times 60 / 2\pi$		rpm
speed = 188.3 x 60 / 2π		A1 for correct
= <u>1798 rpm</u>		speed p

Question number	Working	Answer	Notes	Mark
18(b)	Input power: $0.005 \times 46 \times 10^{6} = 230 \text{ kW}$ Power out from generator Power = IV Power = 80 x 415 = 33.2 kW Overall efficiency = 33.2/230 = 0.1443 or 14.43%	0.1443 or 14.43% Accept final values that round to one decimal place. Allow follow through for rounding	M1 for recognising the need to multiply energy content by mass flow rate A1 for correct value of input power M1 for correct method to calculate power out from generator A1 for the correct value of output	
		ft	power from generator M1 for correct population of the relationship between input and output A1 for correct efficiency value given (ft acceptable)	(6)

Question Number	Answer	Mark
18(c)	Award one mark for identification of an effect on the efficiency of the	
	system and one further mark for justifying for how it affects the efficiency,	

 Output power will be increased (1) increasing the efficiency of the system (1) Losses due to friction are reduced as the speed of the motor increases (1) the effects of friction are virtually constant and therefore have less impact on efficiency (1) The amount of 'slip' between the stator's magnetic field and the rotor will be increased (1) meaning the operation of the generator will become closer to the synchronous speed of the generator (1) 	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R, 0RL, United Kingdom